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This is an interim report on a theoretical investigation of the fluid

flow of jets in ground proximity., Previous investigators have obtained
analytical models of the flow of annular jets which serve to predict
accurately the average pressure rise between the jets. This is sufficient
for performance purposes; however, to obtain an improved understanding

of the flow and to correlate the theory with observed experimental
phenomena, this investigation was undertaken.

This report presents the results of the investigation to date, which
indicate that, by use of simple approximations for the effects of jet
mixing and vorticity in real fluids, excellent correlation of experiment
and theory can be obtained. The investigation is continuing and will
attempt to extend the theory to the unsymmetric cases of rotation and
translation.
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PREFACE

This report has been prepared by Mr. C, C, Hsu,who carried
out the work described hereln. Advisory supervision has
been provided by Mr. M, P, Tulin,
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SUMMARY

A theoretical investigation to determine the viscous ef-
fects on balanced Jets in ground proximity has been carried
out. Pertinent available literature concerning inviscid
Jet impingement, vortex generation and viscous mixing is,
briefly, reviewed. The mean flow pattern of an annular jet
in ground proximity i1s seen to be that of diffusing Jets
which are deflected laterally by thelr interaction with the-
central pressure zone, With simple and plausible approx-
imations, the effects of z standing vortex and jet mixing
can be theoretically determined, resulting in good agree-
ment between predlcted and measured augmentatlon factors.
It is found that in ground proximity the effect of Jet mix=-
ing 1s always adverse and dominant. Curves which allow the
rapid estimation of augmentation factors are presented.
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CONCLUSIONS

The assumptions and approximations involved in the analysis
presented are quite broad. However, the analytic repre-
sentation of the major effects and the important trends of
the results are belleved to be both qualitatively and
quantitatively correct. This 1s borne out by the good
general agreement between predlcted and measured augmenta-
tilon factors. Several tentative conclusions are suggested
by the results for air jet flow flelds 1n ground proximity:

1) The mathematical representation of the Jet flow field,

assuming complete potential flow,is lnadequate.

2) The effect of jet mixing is always adverse and is dom-
inant with respect to the effect of the standing vortex,

3) The viscous effect i1s significantly less for an in-

- wardly inclined annular Jet than for a vertically oriented

Jet.

4) For a fixed ratio of operating helght to machine width,
the effect of jet mixing generally increases' with 1ncreas—
ing nozzle aspect ratio, 2W/t or D/t.
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INTRODUCTION

Since 1956, considerable theoretical and experimental ef-
forts have been applied to the understanding of the basic
principles involved in what has become known as the GEM,
i.e., a machine supported on a cushlon of compressed air
sustained and contained by a peripheral Jjet., Most avail=-

able theories are essentially based on inviscid, incompres-

sible Jet theory. Chaplin (1) presents a very simple ap-
proximation based on the assumption that the Jet is very
thin, and of circular arc cross sectlon. Some refinements
have been added by Pinnes (2), Chaplin and Stephenson (3),
Stanton Jones (%), and Lin (5) to consider the effect of
finite thickness of the jet. Strand (6) and Ehrich (7),
who used a free streamline model, develop an exact perfect
incompressible fluid theory for the two-dimensional model.
However, the details of.the Jet and of base pressure dis-

tribution are, of course, very much influenced by turbulent .

mixing and vortex generation., These effects have only to a
limited extent been studled analytically or through experi-
ments, Since the Jet delivered by the nozzle, except at
very low Reynolds numbers, 18 turbulent in‘nature,.it is
felt, thatacarrect and adequate representation of turbulent °
mixing and vortex effects, rather than precisé mathematical
formulation of the Jet,flow field assuming completely po-
tential flow, is needed., The obJject of thls report 1s to
partially fulfill this requiremenb

It 1s very difficult to qolve for the details of the jet

flow in ground proximity; fortunatély, simple and plausiblé

* approximations for the quantittes in the present problem

are afforded by assuming that the Jet velocity distribution
and the entrainment process therein are the 'same as for a
single Jet discharging into an infinite fluid. .For high
Reynolds number, the problem of‘'determining the effect of
the standing vortex 1s reduced to that of calculating the
invisecld rotational flow patterny in a. closed region with. )
uniform but. undetermined vorticity; the associated indeter-
minacy of the invisclid motion may be resolved by a simple
analysis of the closed boundary layer. As to the effect of
Jet mixing, the calculations are based on the entrainment
process and enomentum balance consideration in the impinge-
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ment region. The overall viscous effects on augmentation
factor of a ground effect machine for various nozzle geo=-
metrles are computed; the results are in good agreement
with experimental findings.,
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METHOD OF ANALYSIS

MEAN FLOW PATTERN OF AN ANNULAR JET IN GROUND PROXIMITY

We shall, first, discuss the mean flow pattern of & two-
dimensional, incompressible annular jet in ground prox-
imity. As alr discharges from the nozzle, high veloclty.
gradlents prevail along both boundarles of the Jet and high
intensities of shear result, Except at very low Reynolds
numbers, turbulence 1s generated, and the mixing process
further reduces the velocity near its boundaries and brings
the neighboring fluid into motion. Under the nozzle base
this leads to the formation of a vortex standing alongside

.the main Jet; thls vortex may in turn generate a second

weak vortex of opposite sense and so on. Along the open
side of the Jet, entrainment 'of fluid into the Jet occurs

as a result of turbulent mixing. The vertical momentum of
the Jjet 1s redvced by the deflectlion action of the ground.
In the hdrizontal'direction, the increased pressure, be-
tween the base plate and ground, acts to curve the Jet out- .
ward. The mean flow pattern of an annular Jet in ground

*proximity is, in general, that of a diffusing Jet curving

outward -with respect to the centérline of* the GEM as
sketched in Figure 1. The .significant variables of the .
problem ‘are the n®zzle base width 2W, the nozzle thickness
L, the nozzle divergence ‘angle ¢',thenozﬂebese helght above

the ground H, the Jet veloclty at the nozzle exit U and the

fluid properties, p (density).and p (viscosity) If these
quantities are, specified, the physical features of the flow

. are determined. By dimensional analysis, the pressure dif- .
* ference adross the: Jet, Apb, and the augmentation factor,

A, defined as the ratio of total lift to the total Jet mo'-: o0
mentum flux, may be expressed as follows: o .
g

i
4

Apb;F(_}z By
m_—J'W’t’ 3 i

_Where J is the Jet momentum per unit length of slot, and

U t’
H P
A = Fz‘ﬁ s T % T
5




If the Reynolds number (=
1s expected that Ap
pU /.
fluenced by the turbulent mixing and vortex generation; it

is then necessary to study, beforehand, the approximate
characterlutico of the turbulent ‘jet.

pUet/u) 1s sufficiently high, it
J/W and A should be independent of

The functions Fl, F, are, of course, very much in-

APPROXIMATE CHARACTERISTIGS OF A TURBULENT JET

- Ag the direct result of tdrbulenée generated at the bound-
aries of & Jet, the fluld within the Jet undergoes both
‘lateral diffusion and ceceleration, and at the same time

fluld from thke surrounding region is brought into mdtion.
The  actual treatment of, the flow in'these regions varies
with distance from the jet origin; with reference to Fig-
ure 2, it will be seen thHat an initial zone of establish-
ment must exlst beyond the efflux section. Since the fluid
diocharged from the boundary opening may be assumed to be
of relatively constant velocity, at the efflux section
there will necessarily be a.very sharp.velocity gradient .
between the Jet and surrounaing fluiG. The eddlies, gen-
erated in this region of high shear willl immpdiately result

in a lateral mixing process which diffuses the shear reglon’

both inwards and outwards with didtance from the efflux
section, Such lateral mixing oroduces a necessarily bal-
anced attion and réagfion:, On the ane hand, the -fluid
within the Jet is gradually decelerated, while on the other

‘hand, the fluid from the zurrounding region is gratually

the constant velecity core of the
while bhoth

entralned; as a result,
Jet will cteadily cecrease in lateral extent,

., the rate of [low and overall breadth of the jet wiil
cdixtance from the ef- .

steadily Increase in magnituue, vilth «
flux section. The limit of this initial wone of flow estab-
lishment 15 reached when the mixing region has penetrated
to the centerline of the jet. Onte the entire central por-
tion of the Jjet becomes turbulent, ihe {low may be con-
sidered as fully established, for the iffuzion process

continues thereafter without escenticl change in character,
Conditionse within both the zone of flow establishment and
6
®
®
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the zone of established flow for a free Jet were first. in-
vestigated theoretically by Tollmien (8), on the assumption
that (1) the sole effective force was the tangential shear
(no pressure gradients), (i1) the mixing length varied with

- the first power of the longitudinal distance from the ef-

flux section but was constant across the Jet, and (1i1) the
intensity of the turbulence was" proportional to the product
of the mixing length and the mean velocity gradient. Later
experimental studies by Corrsin (9) and by Liepmann and
Laufer (10) indicated that there exists considerable dis-
crepancy between assumption (1i1) and the facts. However,
for approxlimate analysls of the mean veloclty distribution.
wlthin either zone, the theory of Tellmien 1s adequate.

Alvertson, et.al (11), developed approximate analytical ex-
pressions for the zone of establishment- and the zone of es-
tablished flow based upon the assumptions: (1) the distri-’
butlon of the, mean .longltudinal velocity foliows the error
law in the regien of diffusion, (ii) thé region of diffusion
expands linearly with distance from the, efflux section, and -
(iii) the pressure distribution is hydrostatic.

Althqugh, in the present problem, the prevailing centrifugal .
force field in the core ‘of a curved jet may have some effect .
on the turbulence,. for the present caléulation, simple and
plausible dpprc (imations for ‘the quantities required are af-
forded, by assuming that the jet velocity distributlon and
entralnment prodess therin are the seme as for a single Jet
discharging into’an:infinite fluid.: For this case, accord-.

.ing to -Reference 11, _the velocity distributions are found
empirically to be: : -

log,, 2. . 18 4 ’O 096 + X__Z_ (zone of establishment)
U

e. -

_ | 211).
log,, éL = 0.36 - 1.84 %; (zone of established flowd

e . .

where u 1s the mean tangential velocity, and the entralnment

-function; f, may be approximated as:

®
®
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[ 0.080 s_/t
} 1+0. CB0 uc/t 3./t < 5.2

|1 - 1.6137 /& 5 /t> 5.2,
\ a ' S . c -

¢ .
where 8. 1s the distance along the jet path.

In the following we shall discuss approximately the effects
of the standing vortex and of Jet mixing by ufilizing the
above-mentioned results.

EFFECT OF'THE STANDING VORTEk

It had been found by Nixon and Sweeny (12)-and Peisson- -
(minton (13) in their experimental studles on ground effect,
phenomena -that "vortices" exist near the rozzle.exits. It
wal indicated in their reports’ that the "vortices" are re-
sponsible Tor the npon-uniformity of the base pressure dis-
tributions; .however, no effort was made to correlate the o
strength of the vortiges with-the Jet parameter or to study
“in detail the flow within the vortex. The flrst theoretical
account .of the subject was giyen by Shen (14), who drew at- -
tention to the' theory of flows with closed streamlines de-
veloped by Batchelor (15) but used a, simple single concen~
trated vortex model to evaluate approximately the pressure
distribution on the base plate duz to vorticity.- A similar
englneering procedure for estimating the pressure distribu-
;Lon on the bpttom of a statlonary gfound effect machline of,
the -annular-jet type "1z suggested by Magnus (1b) who-de- "
velops empirical relqtlons for. the placement and strength
of the “vortices", distributed halfway between the vehicle

. 2nd the ground based upon available mod€l test data., We
feel -that models such' ag those of Shen and Magnus, which
involye point vortices or simple distributions of point
.vortices, are too restrictive and that 1n order to study
actual air Jjet flow fields in ground proximity, a more
reallstic flow model 1s needed.

The two-dimensional air jet flow field under the base of a
GEM has been discussed in previous sections and the mean

@




flow pattern is shown in Figure 1. Since the strength of
the second induced vortex is much smaller than that of the
first, for a first-order analysis, one can practically
assume that beyond the first induced vortex adjacent to the
main Jet the flow fleld 1n the closed reglon 1ls stagnant.

The simplified rotational flow model .1s shown gchematically
in Figure 3. The geometrical designation of the model is:
Width W, which 1s. halfthewidth of a GEM, height H of base
plate above the ground, H& approximately the 1ongitudinalsize

of the induceo vortex. The reduced problem 1is aomewhat
similar to the problem of steady flow with closed stream-
line studied by.Batchelor (15) For sufficiently high Rey-
nolads ‘number, the rotational ‘flow inside the closed region
with the exception of the ‘wall boundary layer may be con- °
.sicdered as inviscid, incompressible and confined by solid
walls; the vorticity 1s dpproximately constant in this re-
glon, Taking ‘the center of the rectangular ABCD as the
origin of cartesian coordinates, the.-equation governing
oteady two-dimensional ‘rotational: flow of an inviscid in—
.compressible fluid may be expresstd as: © e

' v3y = —i - 3]
: ax ' ay- .o ' '

where w is Lagranve% sm@am ﬂnmtion,and -~k represents the
uniform vorticity At the -boundary, the velocity of the
"circulating fluid is in the direction ¢f the tangent fo the
boundary. The problem is identical to that of the torsional
problem with rectangular cross section in elasticity and may -
be solved by an energy method; the approximate solution is
readily given in the book "Theory of Elagticity", by Timo-

shenko (17): g .
L () . |
Bl S e w
n "

in which, from symmetry; m and n must be even numbers. It
is observed in experimental studies, References 12 and 13, that
the longltudinal size of the vortex, H , 1s approximately
equal to H, and is insensitlve to other parameters; hence,
by assuming Hi = H and taking the first three .terms in the
series, .[4] becomes




\2'} T gi&) o

, | H , } 2 2 1
V=i -pl | |8, ta (¥ + %) (51

where ao, &, are found to be, bj using the variational

1
principle,
a = !-v . 5 . é59 . £
o T2 '8 277 (1/2)2 ’,
a - ;L_ 2 . 1 . 35 . . K
The induced velocity .mady be written as;: . o)
., . = ' g
%’5 = -5.- I —y x2- g | 4, 935'.+'-9'—}'—9— .x2+2y2-;_(g‘} I
RE7:) L N (7 L 6]

n
m—

oY 5 Tk x yE- rﬁz]J'935 40,19 '2. +y?-1§ |
5’5 3(1{/2)’2"[' \2 1 (H/?) 2

The preusure, Ps, acting on the walls may be obtained by in-’
tegratrng the momentum equation..

1

u, du_ 13
uax“’ay‘ p 3% v -
dv . ov " o1dp -t (7]
Vo=t v = -= 2
: 40X 3y . e oy
"+ with the condition'of uniform vorticlty
' - dv  du _
. T K (8]
i.en) . ‘
% + = (u + v )— K ¥ + const = Constant (9]

since ¥ '1s taken to be zero on the walls, The motion of

. the fluid in the "inviscid" reglon 1s solved up to an ar-

bltrary vortlcity, -k, which remains to be determined from
the viscous aspect of the problemn,

The associated 1ndeterminacy of the inviscid motion mey be

resolved by an analysis of thin turbulent boundary leyer
along ‘the boundary ABCD. The veloclty dlstribution along

10




the jet boundary AB is assumed to be tahgential and given
by -’

- \
u . . ;
2275 0.66 X/t < 5.2 |
e ' |
A}- [10].
G i .
'EA—E £ 0,66 “‘:g’% - x/t > 5.2. :
e : /

and the velocities along BC,- CD; DA are generally regarded
as.negligible. The calculation of the turbulent boundary
layer 1s, in general, very difficult; for a rough estima=-
tion, we will use the seml-empirlcal method of Trucken-
brodt (for .details, refer to pp. 470-472, Reference 18)
The momentum. thicknegs, 6, 1ls found to be

n/n+1‘
X [11]

3 (] \n+1/h x/H
Hi

RN

8(x) _
H

o]
[p]

S T e

)a+2/n

b

where -

friction drag

C. is the skin friction coefficient =
: : 2 p u H

for smeli Reynolds number -

3 25 B BRgR el AR number = ¢'c. pon large Reynolds number.

et s
TR

If we ‘assume that the boundary layer 1s closed and the ‘gen-
eral magnitude of momentum thitkness is presumed to be- the
same 1n the entlre closed region, for a first-order ap-
proximation, it can be shown '

11




1

ave t

T g\ 7 n)
e
' ( wn+1/én+s
= .66 3 'y x/t < 5.2
: L J
n/n# g\~/2(nh2)
66 1+ ‘n+2 \5.2 E) ) X

g1 ]

.

nh /2n+3

(3v) (5:2 %} . _: : x/t32:5.2. [12]

where

u 'e 1s the average induced velocity irside the.cavity
and approximately equal to 0,24 H k¢ (from Equation

[6])

Y -1s a constant, depending on Lhe local uhearing
stress,

The strength of vortex, -k, becomes

. Ve it '
- A k162 & (F, von) | [13]

" znd the mean pressure loss due to vortex flow inside the
cavity may be approximated as

| . = 2 '

. . P u ' r 7'2

l [NV Y
3pU,° et J

12




Comparisons of veloclty and pressure dilstributions are
made, for y = 0.05, n = 6, between present calculations and
experimental studies by Roshko (19) of the flow within a
square cavity in a wind tunnel wall; the results are in ex-
cellent agreement as shown in Figures 4 and 5. Note that
the velocity increasés continuously from the center of the
"vortex" toward the walls in contrast with the field that
obtains for a polnt vortex. :

The effect of & standing vortex on the average base pres-
sure distribution, Apb, may be expressed as )

. : . '-‘I 2 .
. ! . . H -ave ' '
AP, | - 8p, = =g . .-[151
: lvortex e 95
. T, 2 E '. - . . )
Since o2 < 1, 1t can be séen, In ground proximity, that:
. Uy ) .

" the effects of the standing vortex are relatively small,’
it 1s conjectured here that the effect of Jet mixing may
have a dominant role. ) X :

EFFECT.OF JET MIXING

'The first publication dealing with the effect of Jet mixing
on the annular Jet is that.of Chaplin (20). The theory
makes use of the 'analysis of Tollmein (8) and measurements-
of FoBthmann (21) for the fully-developed free turbulent
Jety his results are, therefore, .limited to altitudes above
the ground sufficiently large that mixing has become fully

"established before the Jet reaches the ground. Mack and
Yen (22) extended Chaplin's result to the case in which im-
pingement occurs while the Jjet 1s still 1n the zone of flow
establishment. 1In our treatment, 'a more rcalistic approx-

* imatlon 1is made to account for the effect of velocity distribu-

tion of the Jet. The basic assumptions, simllar to that

given by Chaplin (20), are made as follows:

1). The Jet curves at a constant rate, until it impinges
on the greund at an angle ¢c from the vertical. .

2) The velocity distributions in the Jet just before

13




~and after tme impingement are similar except very near the
ground.

3) The ratio of entrained mass flow, mec’ to total mass
flow, mc, in the Jjet Jjust before impingement can be repre-

gsented by

[i6]

Oslma
o
'
. N
Im

where s 1s the distance along the Jet path from th2 nozzle .

- exlt to the 1mpingement point.

Within ground effect, ‘the flow pattern 1s assumed to be as -
sketched in Figure 6a. . The Jet curves, until it impinges on ’
f the ground at an angle ¢ from the vertical. From the im-

pingement a part, mu, of the mass flow of the.jet flows in-
ward into -the base cavity, and the rest;.md, flows outward
along .the ground. In steady flow,.the inward mass flow, mu,

must be equal the mass entrainment from the Ease cavity.

The entrainment from the base cavity into the Jet upstream
of the impingement 1s assumed to be ’

o bt i 117 -
. .u a c : g
where ) 1s a constant (=.1/2 for jet -discharging into an’
infinite. fluid). After impingement, ‘the jet’ flow behaves
more or less likeawall jet as -studied by Glauert (23);
1f we assume that, except very near to the ground, the veloc-
ity distribution, as shown in Figure 6b, 'is-similar to that
of a’free half Jet, a second expression for the mass filow,

from the momentum balance, can be obtalned:

cmg Ty -m T = (my+m)u sinfb.C ‘ [18]
or |
n : .
e s G-esms) /04w nel
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where

- U
a =
U4
ﬁt
b = —
.4
. U '1ls the average velocity of the Jet before im-
pingement

T, u, are the average velocitles of the inward and
u .
outward mass flows respectively.

It may be noted here that Chaplin (20) and Mack and Yen (22)
..assumed that a = b 1. .

Combining [17] and [19] gives .
' s

1
sin o =2 |1 - (1+1b)ar|S

.[20]

From the geometry, assumlng: radius of curvature, R, to be
conotant .Sc - R (¢c - ¢o) .
, ' [21]
= R (sin o, = sin'¢o)

where ¢é-is the -angle of divergence of the jet from the
vertical at the jet exit, ' ’ '

The effect of Jet mixing on the base preosure distribution
can be shown as . c

Ap C tsin o, - sin.¢

b o 2 4 af

25/ - 2H/W
If the velocity distributions of the’ Jet and entralnment
function are assuméd to be glven by Equations [1] and [2],
the effect of Jet mixing can easily be evaluated.

H
¢ J'F,- [22]
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RESULTS OF ANALYSIS

In the following, the overall viscous effect, based on the
previous analysis, on-the augmentation factor for a two-
dimensional ground effect machine, in ground proximity, is
computed and can be shown as :

“sin e - sin ¢
c . 0

, ‘A = ¢co8 ¢O + > H/27W +
‘ .2
Hi. L H [t il
f ¢OJ %‘! - It t (g‘H s Vs nif ., [23]

In ground proximity, the two—dimenbional solution affords a
.good approximation to the corresponding axlally symmetric
* golution if 2W 1s replaced by D/2 as'was shown by Chaplin

in.References 1 and 20, The augmentation factor in this '
case may be exprebsed as .

sin ¢ -~ s8in ¢

A-.COu‘b +. -.AH/D . '+

i . _.'r -]___' HYH | \
A l‘b R ) '\l 'D)t tg(H 9 Vs ;’] 24]
where D is the diameter ©of: the nozzle base” plate.

It 1is. well known, for the inviscid incompressible thin
annular jet tbatthe augmentation factor is given by

. l - i"l ¢ - . . K

Ay = 005 & +—m279 .- -(2-dimensional) L
_ 1 - sin ?O . . Lo

= cos ¢ +. ——777555——— - (axi-symmetrical) )

The viscous effects, ‘l.e., .the effects ofrstanding Vortex
and Jjet mixing, can thus be conveniently represented by
the ratio | ) L ' - '

. 16




- H
A-cos ¢6 sin ¢c- 3in ¢o lfl¢ - )

= + L-I" - |

Ainv-cos ¢o 1l - g8in ¢o 1l - s8in ¢OW ‘ j

1EH | & P |

E'ﬁ't'ig AL n}J (2-dimen. ) !

® g Hi ¢ i
sin ¢ -sin ¢ AL o, = ‘ ‘[26
. _ ; N P L} (M_H i ) [26]

1 - sin ¢ 1 -sin ¢ D i

o |

148! HH S L

2D, (D% HH ® ‘} SR o

Numerical calculations are made for the Jet. in balanced .op-
eration. In this _case,

1,40 1n the zqﬁe“of.éstablishment"

u
a4 = === z:' . - .
+ U3+ |1.38 .in thé zone of .established flow
ﬁﬁ 0,30 "1n the 'zone of establishment
Tb=— & . . C 00’ s
Uy 0.39 1n the zone of established flow
1
.A_'Qb.
For the better fitting of the experimental data of Yen (24),
S
the function gl— s 7, ,'- —%¥2 ,.in 26], is calculated by
el
assuming.y O 05, n = 6, The results of Equation'[26],
d for various nozzle geometries, are shown in Figures 7 and 8.

It can be seen that the augmentation factor predicted by .
.thin Jet theory cdn be over-estimated by more than 50 per-
cent, It may be noted here that in our calculations the
last term in Equatioms [23], [24]), and [26] s small in |

comparison with the first two terms. .

Simple experimental studies for a small GEM model with

17




nozzle base cross-section 16" x 24", t = 0.15", ¢ = - 45°
: o

in balanced operation have been conducted by HYDRONAUTICS,
. Incorporated, for various helght-thickness ratios,H/t The
experimental data are shown in Flgure 9 with theoretical
calculations, including planform correctlion, glven by

sin ?c— sin ¢

] o, B '
A = cos ¢o + H.C/8 + kf‘¢ 4
18 1ml T . F
2y foas) e L27]

where C, S are the perimeter'and area - of.nozzle base re-
spectively. The experimental findings seem to support our-
theoretical investigations._

. Comparisons are also made, for.the axi-symmetrical case,
between present calculations and experimental studies by
Kuhn and Carfer (25), Smith (26), and the. Societe Bertin
* from Reference 13, for various nozzle geometries and
machine heights. The results, as shown in Figures 10, 11,
12, are in good agreement.

18




BIBLIOGRAPHY

Chaplin, H. R,, "Theory of Annular Nozzle In Proximity -
to the Ground", DIMB Report 1373, Washington, D, C,,

- July 1957, ' >

‘Pinnes, R, W., “A Power Plant Man's Look at the Ground

Effect Machines", J. Amer, Helicopter Soc.,, v, 4, No.3, "’

' JUIY 1959.

Chaplin, H, R., end Stephenson,_B., "Preliminary Study |

‘of the Hovering Performance of Annular Jet Vehiecles in’

Proximity to the Ground", DTMB Report 1374, Washington,
D, C., August 1958 . )

Stanton-Jones, R., "The Development of the’ Saunders-Roe.
SR. Nl", A,R.C. .21, 491, December 1959. .

: lin, J. D., “Statié S*ability of- Ground Effect Maohines- .
Thick Jet, Theory", Hydronautics, Incorporated Technical

_ Report 011- 2, June 1961,

10,

11.

' Strand, T., "Inviscid Incompressible-Flow Theory of
- Static Peripheral Jet in Proximity to the Ground", L

JoA; J.A.S., V. 28, No. 13 January 1961,

EhI’iCh, F. F., "The Curtain Jet", J A S.’ V 28 NO. ll,. M
November 1961, D

.

Tollmien, Wi, "Calculating of Turbulent Expeneion Pro-
cess", NACA T™M 1085, September 19N5. .

A

aCorrsin, Siis "Investigation of Flow in an ‘Axially Sym=-
metrical Heeted Jet of Air", NACA ACR No, 3L 3, 1943.

Liepmann, H. N., and Laufer, J., Inveetigation on

Free Turbulent Mixing", NACA TN 1257, August 1947, °

Albertson, M. L., Dai,.Y. B,, Jensen, R, A,, and Rouse,'
H.,. "Diffusion ‘of“Subierged Jet", Iowa Inst, of Hy-
draulic Research, State University.of Iowa, June 1947,

19




12,

) 13.0

olul

15,

16..

a7

18,

19.°
' "Cutout", NACA TN 3488 Augu°t 1955 e,

" 20,

21,

22, .

Nixon, W, B., and Sweeny, T. E., "A Review of the
Princeton Ground Effect Program", Symposium on Ground
Effect Phenomena, University of Princeton, October

1959.

Poisson-Guinton, P., "Study of a Current Plan for a

" Ground Effect Platform", Symposium on Ground Effect

Phenomena, University of Princeton, October 1959,

Shen, S, F,, "Effect of Cushion Vortices on Peripheral..

Jet Vehicles", Fundamentals of Stabllity of Peripheral
.Jet. Vehilcles, V. III, Cleveland Pneumatic Industries,

 Inc., Bethesda, Maryland, November 1960,

Magnus, R. J., 'Use of Vortices in Calculction of
Bottom PressUre of Annular Jet Ground Effect Machines ,

‘Engr. Research Report ERR-SD=061, General Dynamics

Corporation, March 1961..

Tlmoshenko, S., Theory of Elasticity, McGraw Hi1l, Book.

Co., Inc., -New York and London, 193%,

-Schlichting, H.y Boundary Layer Theory, McGraw-Hill

Book Co., Inc., New York 1955

]

Roshko, ‘A.,” "Some Measurements of Flow in a Rectangular

Chaplin, H, R., "Effect.of Jét'Mixing on fhe Annular
" Jet", DIMB Aero Report 953, February 1959

Forthmann, E., " TUrbulent Jet Expansion , NACA TM 789,
March 1936. ° .

Mack, L. R., and Yen, B. C., “Theoretical and Expéri-
mental ‘Research on Annular Jet Over Land:and Water",
Proc, of Symposium on Ground Effect Phenomena, Prince-:

ton University,’ October 1959,

20




23.

24,

25,

26,

Glauert, M, B., "The Wall Jet", J,F.M., V. 1 6,
December 1956 )

Yen, B, C., "Pattern of Flow Under a Two-Dimensional
GEM, Iowa Inst, of Hydraulic Research, State Univ,
of Iowa, January 1962,

Kuhn, R, E,, and.Carter, A, w.,'"Research Related
to Ground Effect Machines", Proc..of Symposium on
Ground Effect Phenomena, Princeton Unilversity,

October 1950,

Smith, R. E., "Studies of Ground Effect on a 60°
Inwardly Inclined Annular Jet, Part II" UTIA
Tech, Note 47, May 1961,




¢

Nl
5SS AN on (S

GROUND

o ) FIGURE l-"l'WO.-bIMENSIONAL REPRESENTATION OF ANNULAR 'J.ET.

a ' =
— .

. +. W '_,..I-"'f +|-1. . "y
— B g O . '
—)

_ : = — o - — X .

' ZONE or FLOW - - T~ ZONE OF L C
ESTABLISHMENT :ESTABLISHED - ~.
) c FLOW. - ~

~

FIGURE 2~ SCHEMATIC REPRESENTATION OF JET, DIFFUSION .

28




FIGURE 3- SCHEMATIC OF ROTATIONAL FLOW UNDER
THE BASE OF A GEM
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